Exam Problem Sheet

The exam consists of 4 problems. You may answer in Dutch or in English. You have 90 minutes to answer the questions. Give brief but precise answers. You can achieve 50 points in total.

1. $[5+5+5$ Points. $]$

For each of the following bifurcations of equilibrium points of time continuous systems, give an explicit example (i.e. a one-parameter family of systems showing the respective bifurcation), plot the bifurcation diagram and describe in words the bifurcation scenario.
(a) Transcritical bifurcation.
(b) Pitchfork bifurcation.
(c) Hopf bifurcation.
2. $[6+2+2$ Points. $]$

Consider the planar systems

$$
X^{\prime}=\left(\begin{array}{cc}
-2 & 1 \\
0 & 1
\end{array}\right) X \text { and } Y^{\prime}=\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right) Y
$$

(a) Determine the phase portraits of the two systems.
(b) Determine the canonical forms of the two systems.
(c) Are the two systems topologically conjugate? Justify your answer.
3. $[2+3+4+4+2$ Points.]

Consider the damped harmonic oscillator

$$
\begin{equation*}
x^{\prime \prime}=-x-\nu x^{\prime} \tag{1}
\end{equation*}
$$

with $\nu \geq 0$.
(a) Show that the damped harmonic oscillator has exactly one equilibrium point.
(b) Show that for $\nu=0$, the energy

$$
E=\frac{1}{2} x^{\prime 2}+\frac{1}{2} x^{2}
$$

is conserved along solution curves.
(c) Show that for $\nu=0$, the equilibrium point is stable but not asymptotically stable.
(d) Use the Lasalle Invariance Principle to show that for $\nu>0$, the equilibrium point is asymptotically stable and determine the basin of attraction.
(e) What can you generally say about the stability of the equilibrium of Equation (1) if a term $f(x)$ is added to the right hand side of Equation (1) when $f$ is a polynomial in $x$ with lowest order term $x^{2}$ ? Distinguish between $\nu=0$ and $\nu>0$.

## 4. [5+5 Points.]

Consider the discrete time system $x_{n+1}=f_{\lambda}\left(x_{n}\right)$ where $\lambda \in \mathbb{R}$ is a parameter. Prove that if the system has a fixed point $x^{*}$ for $\lambda_{0}$ with $\left|f_{\lambda_{0}}^{\prime}\left(x^{*}\right)\right|>1$, then there is an interval $I$ about $x^{*}$ and an interval $J$ about $\lambda_{0}$ such that, if $\lambda \in J$, then
(a) $f_{\lambda}$ has a unique fixed point which is a source in $I$, and
(b) all orbits $x_{n+1}=f_{\lambda}\left(x_{n}\right)$ with starting point $x_{0} \in I$ and $x_{0} \neq x^{*}$ eventually leave the interval $I$.

