Intergrerend project dynamische systemen



3 April 2013

### Exam Problem Sheet

The exam consists of 4 problems. You may answer in Dutch or in English. You have 90 minutes to answer the questions. Give brief but precise answers. You can achieve 50 points in total.

# 1. [5+5+5 Points.]

For each of the following bifurcations of equilibrium points of time continuous systems, give an explicit example (i.e. a one-parameter family of systems showing the respective bifurcation), plot the bifurcation diagram and describe in words the bifurcation scenario.

- (a) Transcritical bifurcation.
- (b) Pitchfork bifurcation.
- (c) Hopf bifurcation.

### 2. [6+2+2 Points.]

Consider the planar systems

$$X' = \begin{pmatrix} -2 & 1 \\ 0 & 1 \end{pmatrix} X \text{ and } Y' = \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix} Y.$$

- (a) Determine the phase portraits of the two systems.
- (b) Determine the canonical forms of the two systems.
- (c) Are the two systems topologically conjugate? Justify your answer.

# 3. [2+3+4+4+2 Points.]

Consider the damped harmonic oscillator

$$x'' = -x - \nu x' \tag{1}$$

with  $\nu \geq 0$ .

- (a) Show that the damped harmonic oscillator has exactly one equilibrium point.
- (b) Show that for  $\nu = 0$ , the energy

$$E = \frac{1}{2}x^{\prime 2} + \frac{1}{2}x^2$$

is conserved along solution curves.

- (c) Show that for  $\nu = 0$ , the equilibrium point is stable but not asymptotically stable.
- (d) Use the Lasalle Invariance Principle to show that for  $\nu > 0$ , the equilibrium point is asymptotically stable and determine the basin of attraction.
- (e) What can you generally say about the stability of the equilibrium of Equation (1) if a term f(x) is added to the right hand side of Equation (1) when f is a polynomial in x with lowest order term  $x^2$ ? Distinguish between  $\nu = 0$  and  $\nu > 0$ .

#### 4. [5+5 Points.]

Consider the discrete time system  $x_{n+1} = f_{\lambda}(x_n)$  where  $\lambda \in \mathbb{R}$  is a parameter. Prove that if the system has a fixed point  $x^*$  for  $\lambda_0$  with  $|f'_{\lambda_0}(x^*)| > 1$ , then there is an interval I about  $x^*$  and an interval J about  $\lambda_0$  such that, if  $\lambda \in J$ , then

- (a)  $f_{\lambda}$  has a unique fixed point which is a source in I, and
- (b) all orbits  $x_{n+1} = f_{\lambda}(x_n)$  with starting point  $x_0 \in I$  and  $x_0 \neq x^*$  eventually leave the interval I.